翻訳と辞書
Words near each other
・ Couridjah railway station
・ Couridjah, New South Wales
・ Courier
・ Courier (album)
・ Courier (automobile)
・ Courier (comics)
・ Courier (disambiguation)
・ Courier (email client)
・ Courier (film)
・ Courier (Israeli newspaper)
・ Courant
・ Courant (surname)
・ Courant algebroid
・ Courant bracket
・ Courant Institute of Mathematical Sciences
Courant minimax principle
・ Courant, Charente-Maritime
・ Courante
・ Courante uyt Italien, Duytslandt, &c.
・ Courantyne River
・ Courant–Friedrichs–Lewy condition
・ Couratari
・ Couratari asterophora
・ Couratari asterotricha
・ Couratari atrovinosa
・ Couratari calycina
・ Couratari guianensis
・ Couratari longipedicellata
・ Couratari prancei
・ Couratari pyramidata


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Courant minimax principle : ウィキペディア英語版
Courant minimax principle

In mathematics, the Courant minimax principle gives the eigenvalues of a real symmetric matrix. It is named after Richard Courant.
==Introduction==

The Courant minimax principle gives a condition for finding the eigenvalues for a real symmetric matrix. The Courant minimax principle is as follows:
For any real symmetric matrix ''A'',
: \lambda_k=\min\limits_C\max\limits_}\langle Ax,x\rangle,
where ''C'' is any (''k'' − 1) × ''n'' matrix.
Notice that the vector ''x'' is an eigenvector to the corresponding eigenvalue ''λ''.
The Courant minimax principle is a result of the maximum theorem, which says that for ''q''(''x'') = <''Ax'',''x''>, ''A'' being a real symmetric matrix, the largest eigenvalue is given by ''λ''1 = max||''x''||=1''q''(''x'') = ''q''(''x''1), where ''x''1 is the corresponding eigenvectors. Also (in the maximum theorem) subsequent eigenvalues ''λ''''k'' and eigenvectors ''x''''k'' are found by induction and orthogonal to each other; therefore, ''λ''''k'' = max ''q''(''x''''k'') with <''x'',''x''''k''> = 0, ''j'' < ''k''.
The Courant minimax principle, as well as the maximum principle, can be visualized by imagining that if ||''x''|| = 1 is a hypersphere then the matrix ''A'' deforms that hypersphere into an ellipsoid. When the major axis on the intersecting hyperplane are maximized — i.e., the length of the quadratic form ''q''(''x'') is maximized — this is the eigenvector and its length is the eigenvalue. All other eigenvectors will be perpendicular to this.
The minimax principle also generalizes to eigenvalues of positive self-adjoint operators on Hilbert spaces, where it is commonly used to study the Sturm–Liouville problem.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Courant minimax principle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.